Материал из РУВИКИ — свободной энциклопедии

Логарифмический масштаб

Логарифмический масштаб (шкала) — шкала, длина отрезка которой пропорциональна логарифму отношения величин, отмеченных на концах этого отрезка, в то время как на шкале в линейном масштабе длина отрезка пропорциональна разности величин на его концах.

Логарифмическая шкала исключительно удобна для отображения очень больших диапазонов значений величин. Наглядный пример употребления и полезности логарифмического масштаба — логарифмическая линейка, которая позволяет проводить довольно сложные вычисления с точностью два-три десятичных знака.

По закону, открытому немецким анатомом и физиологом Эрнстом Вебером и сформулированному немецким же физиком и психологом Густавом Фехнером, величина ощущений человека и амплитуда вызвавшего их раздражения связаны логарифмической формулой. Данный закон справедлив для всех видов ощущений человека: слуха, зрения, обоняния, осязания. Закон Вебера — Фехнера звучит так: «Сила ощущения пропорциональна логарифму силы раздражения». Согласно этому закону воспринимаемая громкость звука также пропорциональна логарифму его интенсивности (в частности, логарифму мощности колонок). Поэтому на амплитудно-частотных характеристиках звуковоспроизводящих устройств применяют логарифмический масштаб по обеим осям.

Например, в музыке ноты, различающиеся по частоте в два раза, воспринимаются как одна и та же нота на октаву выше, а интервал между нотами в полтона соответствует отношению их частот 21/12.[1] Поэтому нотная шкала — логарифмическая.[источник не указан 4002 дня]

Примеры применения логарифмического масштаба:

См. также[править | править код]

Примечания[править | править код]

  1. ThinkQuest. Дата обращения: 30 октября 2013. Архивировано из оригинала 1 ноября 2013 года.