Кружевной узел (−2,3,7) имеет две правосторонние скрутки в первом плетении, три левосторонние скрутки во втором и семь левосторонних скруток в третьем.
В теории узловкружевное зацепление (или крендельное зацепление) — это специальный вид зацепления. Кружевное зацепление, являющееся также узлом (то есть зацеплением с одной компонентой), называется кружевным узлом, крендельным узлом или просто кренделем.
В стандартной проекции кружевное зацепление [1] имеет левосторонних скруток в первом плетении[2], во втором и, в общем случае, в n-ом.
Кружевное зацепление можно описать как зацепление Монтезиноса с целым числом переплетений.
Кружевное зацепление является узлом тогда и только тогда, когда и , и все являются нечётными или в точности одно из чисел чётно [3].
Кружевное зацепление является разводимым, если по меньшей мере два равны нулю. Однако обратное неверно.
Кружевное зацепление является отражением кружевного зацепления .
Кружевное зацепление эквивалентно (то есть гомотопически эквивалентно на S3) кружевному зацеплению . Тогда, также, кружевное зацепление эквивалентно кружевному зацеплению [3].
Кружевное зацепление эквивалентно кружевному зацеплению . Однако если ориентировать зацепление в каноническом виде, эти два зацепления имеют противоположную ориентацию.
Зацепление Монтесиноса — это специальный вид зацепления, обобщающее кружевные зацепления (кружевное зацепление можно считать зацеплением Монтесиноса с целыми переплетениями). Зацепление Монтесиноса, являющееся также узлом (то есть, зацепление с однлй компонентой) является узлом Монтесиноса.
Зацепление Монтесиноса состоит из нескольких рациональных плетений. Одним из обозначений зацепления Монтесиноса является [4].
В этих обозначениях и все и являются целыми числами. Зацепление Монтесиноса, заданное таким обозначением, состоит из суммы рациональных плетений, заданных целым числом , и рациональных плетений
Кружевные зацепления (−2, 3, 2n + 1) особенно полезны при изучении 3-многообразий. В частности, для этих многообразий многие результаты были установлены на основе хирургии Дена на кружевном узле (−2,3,7).
Гиперболический объём дополнения кружевного зацепления (−2,3,8) равен учетверённой постоянной Каталана, примерно 3,66. Это кружевное зацепление является одним из двух гиперболических многообразий с двумя каспами с минимальными возможными объёмами, второе многообразие является дополнением зацепления Уайтхеда2010.
Akio Kawauchi. A survey of knot theory. — Birkhäuser, 1996. — [[Служебная:Источники книг/{{{isbn}}}|ISBN {{{isbn}}}]].
Heiner Zieschang.Classification of Montesinos knots // Topology / A. Dold, B. Eckmann/Ludwig D.Faddeev, Arkadii A. Mal’cev. General and Algebraic Topology, and Applications. Proceeding of the International Topological Conference held in Leningrad, August 23-27, 1982. — Berlin Heidelberg: Springer, 1984. — Т. 1060. — (Lecture Notes in Mathematics/USSR). — ISBN 3-540-13337-2. — ISBN 0-387-13337-2.