Материал из РУВИКИ — свободной энциклопедии

Дуга окружности

Дуга окружности с центральным углом

Дуга́ окру́жности (обозначается: ◡) — одна из двух частей (подмножеств) окружности, на которые её разбивают две различные принадлежащие ей точки. Любые две различные точки A и B окружности разбивают её на две части; каждая из этих частей называется дугой.

Если A и B — концы диаметра (то есть центральный угол AOB — развернутый), точка O — центр окружности, то они определяют две равные дуги, называемые полуокружностями. Если угол AOB не развернутый, то одна из двух дуг AB — это часть окружности, лежащая внутри угла AOB; говорят, что она меньше полуокружности, и что вторая дуга больше полуокружности. Эти углы и дуги называют дополнительными.

Дуги можно измерять в угловых единицах (например, в градусах или радианах), однако равные по центральным углам дуги разных окружностей не обязательно равны по длине — их длины прямо пропорциональны радиусу окружности, так что они равны только при равенстве радиусов.

Свойства[править | править код]

 — дуга окружности
  • Длина дуги окружности радиуса вычисляется по формуле:
    • ; где  — центральный угол, выраженный в радианах;
    • ; где  — центральный угол, выраженный в градусах.
  • Длина хорды , стягивающей дугу окружности радиуса с центральным углом :

Вариации и обобщения[править | править код]

В более широком смысле понятие «дуга» (простая дуга, жорданова дуга) может означать часть произвольной кривой, заключённую между двумя её точками и не содержащую точек самопересечения[1].

См. также[править | править код]

Примечания[править | править код]

  1. Дуга // Математическая энциклопедия (в 5 томах). — М.: Советская Энциклопедия, 1979. — Т. 2. — С. 391. — 1104 с.

Ссылки[править | править код]