Аквапорины

Аквапориныинтегральные мембранные протеины, формирующие поры в мембранах клеток. Семейство аквапоринов входит в более крупное семейство основных внутренних белков (англ. major intrinsic proteins, MIP), наиболее типичный представитель которых — основной внутренний белок волокон хрусталика (MIP).

История открытия

За открытие аквапоринов Питер Агре получил в 2003 году Нобелевскую премию по химии, совместно с Родриком Маккинноном, удостоившимся награды за изучение структуры и механизмов работы калиевых каналов.

Функции

Аквапорины, или "водные каналы", избирательно пропускают молекулы воды, позволяя ей поступать в клетку и покидать её, в то же время препятствуя протоку ионов и других растворимых веществ. Другие акваглицеропорины пропускают не только воду, но и глицерин, CO2, аммиак и мочевину, в зависимости от диаметра и формы образуемой поры, однако аквапорины совершенно непроницаемы для заряженных частиц, и это их свойство позволяет сохранять электрохимический мембранный потенциал.

Аквапорины содержатся в мембранах множества клеток человека, а также бактерий и других организмов. Аквапорины выполняют незаменимую роль в системе водного транспорта растений.

Аквапорины млекопитающих

У млекопитающих описано 13 типов аквапоринов, из них 6 обнаруживаются в почках.[1] Возможно, некоторые аквапорины еще не описаны. В таблице приведены наиболее исследованные типы белка:

Тип Локализация[2] Функции[2]
Аквапорин 1 Реабсорбция воды
Аквапорин 2 Реабсорбция воды в ответ на вазопрессин
Аквапорин 3 Реабсорбция воды
Аквапорин 4 Реабсорбция воды

Аквапорины растений

У растений описано пять групп аквапоринов:[4]

  • Интегральные белки плазматической мембраны, Plasma membrane Intrinsic Protein (PIP)[5]
  • Интегральные белки тонопласта, Tonoplast Intrinsic Protein (TIP)[6]
  • Интегральные нодулин-26-подобные белки, Nodulin-26 like Intrinsic Protein (NIP)[7]
  • Малые основные интегральные белки, Small basic Intrinsic Protein (SIP)[8]
  • Интегральные X белки, X Intrinsic Protein (XIP)[9]

Данные пять групп аквапоринов на основе последовательностей, кодирующих их ДНК, были разделены на эволюционные подгруппы. Аквапорины плазматической мембраны (PIP) делятся на две подгруппы: PIP1 и PIP2. Аквапорины тонопласта (TIP) классифицируются на 5 подгрупп: TIP1, TIP2, TIP3, TIP4 и TIP5. В каждой подгруппе выделяют изоформы, например: PIP1;1, PIP1;2. Важно также отметить, что набор аквапоринов не только видоспецифичен, но также ткане- и цитоспецифичен; также следует учитывать, что паттерн экспрессии аквапоринов изменяется в ходе онтогенеза.[10]

Функции аквапоринов в растениях

У растений вода поглощается корнями, главным образом, в зоне всасывания, для которой характерно наличие корневых волосков - цитоплазматических выростов трихобластов. После поглощения вода проходит кору корня и поступает в проводящие ткани. Выделяют три пути латерального (от периферии корня к центральной его части)[11]:

Было показано, что при погружении корней в хлорид ртути (наиболее общеупотребительный ингибитор аквапоринов растений) поток воды значительно снижается, в то время как транспорт ионов не изменяется.[11] Данный факт подверждает наличие специализированных механизмов поглощения воды корнями растений, не связанных с транспортом ионов.

Также важно отметить, что аквапорины играют важную роль в поддержании нормальной осмолярности цитоплазмы и принимают участие в росте растительных клеток растяжением, регулируя трансмембранный поток воды в клетку.[10] В частности, предполагается участие аквапоринов в регидратации обезвоженных пыльцевых зёрен на рыльце пестика и регуляция трансмембранного потока воды в растущую пыльцевую трубку. [13]

Подавление экспрессии генов аквапоринов в растениях приводит к снижению гидравлической проводимости и снижению интенсивности фотосинтеза в листьях.[14]

Регуляция работы аквапоринов у растений

Регуляция работы аквапоринов позволяет контролировать их пропускающую способность, что может быть необходимо, например при засухе, когда необходимо ограничить потери воды клетками.[15] Закрывание/открывание аквапоринов достигается путем посттрансляционных модификаций, которые приводят к изменения конформации белка. В настоящее время у растений известно два механизма, контролирующих состояние аквапоринов:

  • дефосфорилирование остатка серина - отщепление остатка фосфорной кислоты (осуществляется при водном дефиците);
  • протонирование остатка гистидина (при затоплении).

Показано в частности, что фосфорилирование/дефосфорилирование аквапоринов играет важную роль в открывании и закрывании лепестков тюльпана в ответ на изменения температуры.[16][17]

Генетика

Мутации в гене аквапорина-2 вызывают у человека наследственный нефрогенный несахарный диабет.[18]

Примечания


Править