в которой элементы являются моментами инерции относительно различных осей:
Матрица тензора инерции может быть представлена в диагональном виде, и тогда диагональные элементы , , будут главными моментами инерции тела. Уравнение эллипсоида инерции тогда запишется как:
При этом координатные оси эллипсоида должны совпадать с главными осями тела.
Знание эллипсоида инерции позволяет найти момент инерции тела относительно любой оси, если только она проходит через центр эллипсоида. Для этого вдоль выбранной оси проводится радиус-вектор до пересечения с эллипсоидом инерции. Момент инерции тела относительно этой оси даётся формулой:
, где — длина радиус-вектора.
Если момент внешних сил относительно неподвижной точки равен нулю, то говорят, что реализуется случай Эйлера движения твердого тела. Для такого случая Пуансо удалось получить наглядную геометрическую интерпретацию: эллипсоид инерции для неподвижной точки катится без скольжения по плоскости, неподвижной в пространстве; эта плоскость ортогональна вектору кинетического момента тела; угловая скорость тела пропорциональна длине радиус-вектора точки касания, а по направлению с ним совпадает.
Пусть параллелепипед имеет размеры . Главные моменты инерции:
Примерный вид эллипсоида инерции представлен на иллюстрации.
Для расчета эллипсоида инерции бесконечно длинного тонкого стержня один из размеров считается много больше остальных, и эллипсоид вырождается в цилиндрическую поверхность.