18 июля 2017 года компания Яндекс выложила библиотеку с алгоритмом CatBoost в открытый доступ с открытой лицензией Apache 2.0[1][2][3], которая является продолжением и развитием закрытого проекта Яндекса — Матрикснет[⇨].
Закрытая система машинного обучения Матрикснет разрабатывалась компанией Яндекс с 2009 года для использования градиентного бустинга во внутренних проектах компании — в первую очередь, для построения формулы ранжирования поисковой выдачи[4].
Сравнивая CatBoost с подобными системами машинного обучения компаний Google (TensorFlow) и Microsoft (LightGBM), руководитель разработки систем машинного обучения «Яндекса» Анна Вероника Дорогуш отметила, что Google TensorFlow решает другой класс задач, эффективно анализируя однородные данные — например изображения. А «CatBoost работает с данными разной природы и может быть использован в связке с TensorFlow и другими алгоритмами машинного обучения в зависимости от конкретных задач». У Microsoft LightGBM российская разработка выигрывает по качеству, что демонстрирует таблица тестов с общепринятыми в машинном обучении сравнениями, но пока проигрывает в скорости — что Яндекс обещает исправить[5].
В первую очередь технология CatBoost используется для улучшения результатов поисковой системыЯндекс, ранжирования персональной ленты рекомендаций — например в Яндекс.Дзен, для расчёта прогноза погоды и в других интернет-сервисах компании «Яндекс», где он показал себя лучше предыдущей технологии — «Матрикснета». В своих решениях для промышленности команда Yandex Data Factory также использует эту технологию, в частности она используется для оптимизации расхода сырья и предсказания дефектов при производстве.[источник не указан 779 дней]
CatBoost был внедрён Европейским центром ядерных исследований (ЦЕРН) при исследованиях на Большом адронном коллайдере (БАК) для объединения информации с различных частей детектора LHCb в максимально точное, агрегированное знание о частице. Используя для комбинирования данных CatBoost, учёным удалось добиться улучшения качественных характеристик финального решения, где результаты CatBoost оказались лучше результатов, получаемых с использованием других методов[6][7].