У этого термина существуют и другие значения, см. Пространство.
Запрос «Линейное пространство» перенаправляется сюда; см. также другие значения.
Ве́кторное простра́нство (лине́йное пространство) — математическая структура, представляющая собой набор элементов, называемых векторами, для которых определены операции сложения друг с другом и умножения на число — скаляр[1]. Эти операции подчинены восьми аксиомам[⇨]. Скаляры могут быть элементами вещественного, комплексного или любого другого поля чисел. Частным случаем подобного пространства является обычное трёхмерное евклидово пространство, векторы которого используются, к примеру, для представления физических сил. При этом вектор как элемент векторного пространства не обязательно должен быть задан в виде направленного отрезка. Обобщение понятия «вектор» до элемента векторного пространства любой природы не только не вызывает смешения терминов, но и позволяет уяснить или даже предвидеть ряд результатов, справедливых для пространств произвольной природы[2].
Векторные пространства являются предметом изучения линейной алгебры. Одна из главных характеристик векторного пространства — его размерность.[⇨] Размерность представляет собой максимальное число линейно независимых элементов пространства, то есть, прибегая к грубой геометрической интерпретации, число направлений, которые невозможно выразить друг через друга посредством только операций сложения и умножения на скаляр. Векторное пространство можно наделить дополнительными структурами, например, нормой или скалярным произведением. Подобные пространства естественным образом появляются в математическом анализе, преимущественно в виде бесконечномерных функциональных пространств[en], где в качестве векторов выступают функции. Многие проблемы анализа требуют выяснить, сходится ли последовательность векторов к данному вектору. Рассмотрение таких вопросов возможно в векторных пространствах с дополнительной структурой, в большинстве случаев — подходящей топологией, что позволяет определить понятия близости и непрерывности. Такие топологические векторные пространства, в частности, банаховы и гильбертовы, допускают более глубокое изучение.
Определена операция сложения векторов , сопоставляющая каждой паре элементов множества единственный элемент множества , называемый их суммой и обозначаемый .
Определена операция умножения векторов на скаляры, сопоставляющая каждому элементу поля и каждому элементу множества единственный элемент множества , обозначаемый или .
Заданные операции должны удовлетворять следующим аксиомам — аксиомам линейного (векторного) пространства:
для любых (коммутативность сложения);
для любых (ассоциативность сложения);
существует такой элемент , что для любого (существование нейтрального элемента относительно сложения), называемый нулевым вектором, или просто нулём, пространства ;
для любого существует такой элемент , что , называемый вектором, противоположным вектору ;
(ассоциативность умножения на скаляр);
(унитарность: умножение на нейтральный (по умножению) элемент поля сохраняет вектор).
(дистрибутивность умножения вектора на скаляр относительно сложения скаляров);
(дистрибутивность умножения вектора на скаляр относительно сложения векторов).
Таким образом, операция сложения задаёт на множестве структуру (аддитивной) абелевой группы.
Векторные пространства, заданные на одном и том же множестве элементов, но над различными полями, будут различными векторными пространствами (например, множество пар действительных чисел может быть двумерным векторным пространством над полем действительных чисел либо одномерным — над полем комплексных чисел).
Алгебраическое определение:
Линейное подпространство, или векторное подпространство, ― непустое подмножество линейного пространства такое, что само является линейным пространством по отношению к определённым в действиям сложения и умножения на скаляр. Множество всех подпространств обычно обозначают как . Чтобы подмножество было подпространством, необходимо и достаточно, чтобы
для всякого вектора вектор также принадлежал при любом ;
для всяких векторов вектор также принадлежал .
Последние два утверждения эквивалентны следующему:
для всяких векторов вектор также принадлежал для любых .
В частности, векторное пространство, состоящее из одного лишь нулевого вектора, является подпространством любого пространства; любое пространство является подпространством самого себя. Подпространства, не совпадающие с этими двумя, называют собственными, или нетривиальными.
В действительности данное определение (и приводимые ниже) приложимо не только к комбинациям векторов, но и к комбинациям любых других объектов, для которых подобные суммы вообще имеют смысл (например, к комбинациям точек аффинного пространства).
Линейная комбинация называется:
нетривиальной, если хотя бы один из её коэффициентов отличен от нуля.
барицентрической, если сумма её коэффициентов равна 1[4],
выпуклой, если сумма её коэффициентов равна 1 и все коэффициенты неотрицательны,
сбалансированной, если сумма её коэффициентов равна 0.
Векторы называются[5]линейно зависимыми, если существует их нетривиальная линейная комбинация, значение которой равно нулю; то есть
при некоторых ненулевых коэффициентах (то есть если хотя бы один из не равен нулю).
В противном случае эти векторы называются линейно независимыми.
Данное определение допускает следующее обобщение: бесконечное множество векторов из называется линейно зависимым, если линейно зависимо некоторое конечное его подмножество, и линейно независимым, если любое его конечное подмножество линейно независимо.
Можно показать[6], что число элементов (мощность) максимального линейно независимого множества элементов векторного пространства не зависит от выбора этого множества. Данное число называется рангом, или размерностью, пространства, а само это множество — базисом (базисом Га́меля, или линейным базисом). Элементы базиса именуют базисными векторами. Размерность пространства чаще всего обозначается символом .
Таким образом, размерность векторного пространства является либо неотрицательным целым числом (в частности, равным нулю, если пространство состоит из одного лишь нулевого вектора), либо бесконечностью (точнее, мощностью бесконечного множества). В первом случае векторное пространство называется конечномерным, а во втором — бесконечномерным (например, бесконечномерным является пространство непрерывных функций). Традиционно изучение конечномерных векторных пространств и их отображений относится к линейной алгебре, а изучение бесконечномерных векторных пространств — к функциональному анализу. Во втором случае существенную роль играет вопрос о разложимости данного элемента по заданной бесконечной системе функций, то есть о сходимости соответствующих бесконечных сумм, для чего бесконечномерное векторное пространство рассматривается вместе с дополнительной структурой, позволяющей определять сходимость, например, с метрикой или топологией.
Свойства базиса:
Любые линейно независимых элементов -мерного пространства образуют базис этого пространства.
Любой вектор можно представить (единственным образом) в виде конечной линейной комбинации базисных элементов:
Линейная оболочка подмножества линейного пространства — пересечение всех подпространств , содержащих .
Линейная оболочка является подпространством .
Линейная оболочка также называется подпространством, порожденным. Говорят также, что линейная оболочка — пространство, натянутое на множество .
Линейная оболочка состоит из всевозможных линейных комбинаций различных конечных подсистем элементов из . В частности, если — конечное множество, то состоит из всех линейных комбинаций элементов . Таким образом, нулевой вектор всегда принадлежит линейной оболочке.
Если — линейно независимое множество, то оно является базисом и тем самым определяет его размерность.
Кострикин А. И. Введение в алгебру. Ч. 2: Линейная алгебра. — 3-е. — М.: Наука., 2004. — 368 с. — (Университетский учебник).
Мальцев А. И. Основы линейной алгебры. — 3-е. — М.: Наука, 1970. — 400 с.
Постников М. М. Линейная алгебра (Лекции по геометрии. Семестр II). — 2-е. — М.: Наука, 1986. — 400 с.
Стренг Г. Линейная алгебра и её применения = Linear Algebra and Its Applications. — М.: Мир, 1980. — 454 с.
Ильин В. А., Позняк Э. Г. Линейная алгебра. 6-е изд. — М.: Физматлит, 2010. — 280 с. — ISBN 978-5-9221-0481-4.
Халмош П. Конечномерные векторные пространства = Finite-Dimensional Vector Spaces. — М.: Физматгиз, 1963. — 263 с.
Фаддеев Д. К. Лекции по алгебре. — 5-е. — СПб.: Лань, 2007. — 416 с.
Шафаревич И. Р., Ремизов А. О. Линейная алгебра и геометрия. — 1-е. — М.: Физматлит, 2009. — 511 с.
Шрейер О., Шпернер Г. Введение в линейную алгебру в геометрическом изложении = Einfuhrung in die analytische Geometrie und Algebra / Ольшанский Г. (перевод с немецкого). — М.—Л.: ОНТИ, 1934. — 210 с.