Долгое время считалось, что планеты должны иметь круговую орбиту. После долгих и безуспешных попыток подобрать круговую орбиту для Марса, Кеплер отверг данное утверждение и, впоследствии, используя данные измерений, сделанных Тихо Браге, сформулировал три закона (см. Законы Кеплера), описывающих орбитальное движение тел.
долгота восходящего узла () — определяет положение плоскости орбиты небесного тела в пространстве,
аргумент перицентра () — задаёт ориентацию аппарата в плоскости орбиты (часто задают направление на перицентр),
момент прохождения небесного тела через перицентр () — задаёт привязку по времени.
Эти элементы однозначно определяют орбиту независимо от её формы (эллиптической, параболической или гиперболической). Основной координатной плоскостью может быть плоскость эклиптики, плоскость галактики, плоскость земного экватора и т. д. Тогда элементы орбиты задаются относительно выбранной плоскости.
наклонная — орбита с наклонением i > 0° относительно плоскости отсчёта (например, относительно экватора Земли, эклиптики, галактической плоскости); частным случаем является полярная орбита с наклонением i=90° относительно экватора Земли
экваториальная — орбита с наклонением i = 0° относительно экватора центрального тела орбиты; частными случаями являются геостационарная орбита и ареостационарная орбита
По синхронности орбиты с центральным телом орбиты[править | править код]
синхронная — орбита, на которой орбитальный период равен звёздным суткам центрального тела; частными случаями являются геосинхронная орбита, солнечно-синхронная орбита, орбита «Тундра» и ареосинхронная орбита
субсинхронная — орбита, на которой орбитальный период меньше звёздных суток центрального тела; частными случаями являются полусинхронная орбита и орбита «Молния»
Низкая опорная орбита — начальная низкая околоземная орбита, которую предусмотрено существенно преобразовать посредством увеличения высоты или изменения наклонения орбиты
Также существует разделение на замкнутые и незамкнутые орбиты, в особенности для космических аппаратов.
Andrea Milani and Giovanni F. Gronchi. Theory of Orbit Determination (Cambridge University Press; 378 pages; 2010). Discusses new algorithms for determining the orbits of both natural and artificial celestial bodies.